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INTRODUCTION 

The observations of Wu (1993, 1995) and Dunne and 
Ferrill (1995) indicate that fractal characterization can 
provide partial solutions and helpful insights into the 
problems of cross-section balancing. Wu (1993) uses both 
ruler and spectral methods to compute the fractal 
dimension (DC and Dp, respectively) of a structural 
profile. Wu concludes that Dp is underestimated (Wu, 
1993, pp. 1503 and 1504) and attempts to resolve the 
differences between the spectral and ruler estimates by 
introducing vertical exaggeration into the profile (Brown, 
1987; Wong, 1987). Wu, 1993 (bottom of p. 1503) notes 
that inherent differences between the ruler and spectral 
methods may exist and adopts an intermediate value 
obtained through vertical exaggeration of the profile 
(Wu, 1993 right side of p. 1504). Wu, 1993 (p. 1506) 
concludes that vertical exaggeration of the profile is 
necessary to obtain a useful D,, but Wu, 1995 (e.g. 
bottom page 762) employs D, without resealing. The 
following discussion notes inherent differences between 
D, and Dp and presents examples of possible errors that 
can arise in the computation of Dp. 

SELF SIMILARITY VERSUS SELF AFFINITY 

Existence of the relationship Ni= C/rjD, defines a self- 
similar fractal (Mandelbrot, 1985), where Ni is the 
number of steps required to walk a curve with compass 
opening ri, and D is the fractal dimension (DC). The 
requirement of self-similarity is implicit in the application 
of fractals to bed-length balancing. 

The compass method of determining fractal dimension 
(D,) provides a direct estimate of curve length over a 
certain range of scales. Within the context of strain 
estimation, the length of a deformed layer is treated as a 
self-similar fractal characterized by compass dimension 
(DC); otherwise, accurate estimates of the influence of 
finer scale structure on the length of a profile cannot be 
obtained. 

The notion of self-affinity usually arises in the context 
of spatial or temporal variation of properties having 
different units such as the variation of the Earth’s 
magnetic field with time at some point on the Earth’s 
surface (Turcotte, 1992). While length of a self-similar 
trail remains invariant to rotation of coordinate axes, the 
idea of length and axis rotation are meaningless for self- 
affine fractals. 

Self-affine fractals have power spectra S(J) that vary as 
fB, wheref is frequency and /I the slope of the log-log 
spectrum (Turcotte, 1992). Spectral analysis of a function 
requires that it be single-valued. Spectral analysis can be 
conducted on spatial functions such as profile relief (e.g. 
Wilson, 1989; Wu, 1993). However, the physical sig- 
nificance of the power-spectral measurement of fractal 
dimension (DJ, is not directly related to curve length, but 
to the height-height correlation function (Wang, 1987). 
The height-height correlation is just the autocorrelation 
of profile height, and the Fourier transform of the 
autocorrelation function is the power spectrum (Oppen- 
heim and Schafer, 1975). 

The power spectral method is truly a scale invariant 
measure of D since the log-log slope of the power 
spectrum is invariant to arbitrary resealing of the input. 
However, power spectral estimates of D can be quite 
variable and depend on factors other than the fractal 
characteristics of a given data set. Sources of error in the 
power spectral estimate are associated with sampling, 
noise, edge effects, and statistical nonstationarity. Wu, 
1993 (p. 1502) assumes that faults and overturned folds 
are absent, or of minor importance along the horizon of 
interest. If this assumption is incorrect additional error is 
introduced and the assumption of self-affinity cannot be 
made. 

SOURCES OF ERROR IN Dp 

Wu (1993) evaluated the fractal characteristics of 
structural relief along the Silurian Wills Creek Formation 
in the section of Dean et al. (1985) shown here as Segment 
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Fig. 1. Structural relief along the base of the Silurian Wills Creek 
Formation digitized from the section of Dean et al. (1985) is shown as 
profile T. Segment A is the portion of the profile examined by Wu 
(1993). Analysis of additional subdivisions of the profile (B, C, D, and 

TR) are presented in the discussion. 

A of Fig. 1. For this discussion, that horizon was digitized 
at sample intervals of 134 m, 128 m, and 48 m (outcrop 
scale). Computation of Dp from the slope of the power 
spectrum for these sample intervals yields 1.18 kO.085, 
1.145 f 0.075, and 1.13 f. 0.045, respectively. 

Additional error is present in the estimates when the 
profile is sampled at an interval smaller than the 
wavelengths of structures actually represented in the 
profile. For example, a 48 m sample interval will reveal 
folds along the profile with wavelengths of 96 m. 
However, folds with wavelengths of less than 250 m do 
not appear in the interpretation presented by Dean et al. 
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Fig. 2. Log-log plot of the power spectrum for Segment A (Fig. 1) 
computed at a 48 m sample interval. Regression lines corresponding to 
fractal dimensions of 1.07 and 1.13 computed for ki0.005 m-’ and 

ki0.004 m-‘, respectively are plotted for comparison. 

(1985). This leads to flattening in the higher wavenumber 
region of the spectrum (wavenumbers of 0.004 rn- ’ and 
greater in Fig. 2). The break in slope and the realization 
that these small wavelengths (higher wavenumbers) are 
unrelated to actual structure, suggests that inclusion of 
this high wavenumber region of the spectrum in the 
computation of Dp will introduce error into the estimate. 
Also, choice of different cut-off frequencies will result in 
different values of D. For example, Dp computed from 
wavenumbers less than 0.005 m-’ (see Fig. 2) is 
1.07 10.08, while Dp computed for wavenumbers less 
than 0.004 m-’ yields a Dp of 1.16 + 0.08. Oversampling 
offers a means to discriminate between signal and noise. 
The accuracy of the D,, may be improved by confining the 
computations to the range of wavelengths actually 
represented in the data. However, if the break between 
‘signal’ and noise is misidentified, additional error may be 
introduced as illustrated in this example. 

The different fractal dimensions calculated for Seg- 
ment A (Fig. 1) are tabulated below for comparison 

(Table 1). Dp of 1.105 obtained by Wu, 1993 (p. 1503) 
could easily be obtained through minor differences in 
digitization, sampling interval, and the actual start and 
end points of the segment analyzed. 

Error in the estimate of Dp may also be introduced in 
the form of edge effects and internal discontinuities. 
Figure 3(a) and (b) represent two non-fractal functions, a 
linear rise and step discontinuity, respectively. Both these 
functions have Fourier series coefficients that vary as l/‘, 
so that their power (amplitude squared) varies as l/f2. 
Hence, the slope of their power spectra, @, will be 2, and 
Dp, 1.5. 

The geologic analogue of the linear-rise is a gradual 
rise in structural level across a profile. The region of 
analysis could lie on the flank of a larger structure, for 
example. Examination of the entire profile (Fig. 1, curve 
T) reveals an increase in the structural relief of the major 
anticlines to the southeast as shallow structures in the 
roof sequence are thrust upward above a Cambrian- 
Ordovician horse beneath Great North Mountain. Not 
surprisingly, the power spectrum of the entire profile 
yields a Dp of 1.64 + 0.015 (48 m sample interval). The 
presence of a rise in structural relief across the profile is 
the certain cause of the high fractal dimension obtained 
for the whole profile. The geologic analogue of the step- 

Table 1. Power spectral estimates of 
fractal dimension (0,) for Segment A 
calculated for different sample rates 
and different wavenumber ranges (k) 

k-range Dn 

48 total 1.131 
48 50.005 m 1.07 
48 SO.004 m 1.16 

122 total 1.145 
134 total 1.18 
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Fig. 3. Simplified, non-fractal, profiles consisting of (a) a linear rise in slope, and (b) a vertical step discontinuity have power 
spectral slopes (8) equal to 2. 

discontinuity (Fig. 3b) occurs in the form of a fault step in 
an otherwise undeformed layer. Although normal offsets 
are not present along this profile (Fig. l), the model serves 
to illustrate a source of error that might arise in an 
extensional tectonic setting. D,, of 1 implies that the 
curves are self-similar. The step and the ramp are self- 
similar and have compass dimension D, of I. 

Dp VERSUS DR 

Structural relief along the base of the Silurian Wills 

Creek Formation has been divided into segments T 
(entire profile), A, B, C, D, and TR (Fig. 1). Dp and DR 
were computed for each segment (Table 2). Based on the 
preceding discussion, significant variation in the values of 
Dp are expected. 

The values obtained for Dp vary between 0.9 and 1.6. 
Their variation is related primarily to edge effects. 
Nonstationarity in the structural characteristics of the 
different segments (Fig. 1) is also considered a possible 
source of error. For example, the wavelengths and 
amplitudes of the folds represented in Segments C and 
D are significantly different from those interpreted for 

Table 2. Power-spectral and compass 
estimates of D,, and D, are tabulated 
for several segments of the structural 
profile (Fig. 1). The estimates were 
made on data sampled at 48 m inter- 
vals. Wavenumber greater than 
0.004 m-’ (wavelengths of 250 m) 
were not incorporated in the computa- 

tion of Dp 

Segment TR. The structural (and statistical) character- 
istics of the two regions are quite different. Large 
segments (Segments A, B, and T) include different 
proportions of these different provinces. The combina- 
tion of nonstationarity and edge effects obscures any 
consistency or structural interrelationship between the 
various values of Dp listed in Table 1. The results provide 
no useful geologic information. 

Fractal dimensions determined from compass mea- 
surements (DC) vary by approximately 1% or less. 
Although these variations are small, the differences 
appear consistent with the structural elements present in 
each segment. For example, the highest D, (1.041) is 
associated with the entire line. The large amplitude steep- 
limbed structure on the eastern end of the profile, if 
representative of structural variability over a certain 
range of scales, would yield larger shortening estimates 
over that range. D, for Segment TR may seem anom- 
alously high, but if shortening is accommodated by this 
tighter, high-relief, style of fold, then greater shortening 
would be expected over an extended range of scales. 
Segment D (DC= 1.03 +0.0013) covers a slightly longer 
interval than Segment C (DC= 1.03310.0014). The 
possibility that the fractal dimension for Segment D is 
slightly higher than that for Segment C, also seems 
reasonable, since the added intervals incorporate lower 
relief structures into Segment D. The added features, if 
representative of all scales, reduce the tendency of the 
curve to increase in length as smaller and smaller scales 
are included. 

CONCLUSION 

Segment DP D, 

T 1.6 1.041 
A 1.16 1.029 
B 0.84 1.037 
C 1.17 1.033 
D 1.19 1.03 
TR 0.9 1.038 

The preceding observations reveal that D, is represen- 
tative of the structural variability observed along the 
profile, whereas Dp is not. Wu (1995) offers a useful tool 
for estimating the contribution of several orders of folds 
to total bed-length shortening. Wu (1993) attempts to 
resolve differences between Dp and D, through magnifi- 
cation of structural relief. However, there is no reason to 
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assume that the two methods produce the same fractal 
dimension; Dp is not uniquely related to profile length. 
Attempts to resolve differences between Dp and D, will 
lead to significant misrepresentation of bed-length short- 
ening. 

The compass dimension (DC) is directly related to the 
length of the deformed layer. The compass method 
provides a means to predict bed-length shortening that 
incorporates higher order folds estimated from a few fold 
orders observed on a regional scale cross section. The 
geologist has to decide whether inclusion of finer scale 
structure is appropriate, since it is possible to obtain any 
percentage of shortening simply by including smaller and 
smaller order structures. The result is meaningless if 
structures at finer scales are not present. It may also 
happen that fractal interrelationships may extend only 
over two or three fold orders, and that the fractal 
dimension may change from one range of scales to 
another. 
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